skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Bollazzi, Martin"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. AbstractInsect societies vary greatly in their social structure, mating biology, and life history. Polygyny, the presence of multiple reproductive queens in a single colony, and polyandry, multiple mating by females, both increase the genetic variability in colonies of eusocial organisms, resulting in potential reproductive conflicts. The co-occurrence of polygyny and polyandry in a single species is rarely observed across eusocial insects, and these traits have been found to be negatively correlated in ants.Acromyrmexleaf-cutting ants are well-suited for investigating the evolution of complex mating strategies because both polygyny and polyandry co-occur in this genus. We used microsatellite markers and parentage inference in five South AmericanAcromyrmexspecies to study how different selective pressures influence the evolution of polygyny and polyandry. We show thatAcromyrmexspecies exhibit independent variation in mating biology and social structure, and polygyny and polyandry are not necessarily negatively correlated within genera. One species,Acromyrmex lobicornis, displays a significantly lower mating frequency compared to others, while another species,A. lundii, appears to have reverted to obligate monogyny. These variations appear to have a small impact on average intra-colonial relatedness, although the biological significance of such a small effect size is unclear. All species show significant reproductive skew between patrilines, but there was no significant difference in reproductive skew between any of the sampled species. We find that the evolution of social structure and mating biology appear to follow independent evolutionary trajectories in different species. Finally, we discuss the evolutionary implications that mating biology and social structure have on life history evolution inAcromyrmexleaf-cutting ants. Significance statementMany species of eusocial insects have colonies with multiple queens (polygyny), or queens mating with multiple males (polyandry). Both behaviors generate potentially beneficial genetic diversity in ant colonies as well as reproductive conflict. The co-occurrence of both polygyny and polyandry in a single species is only known from few ant species. Leaf-cutting ants have both multi-queen colonies and multiply mated queens, providing a well-suited system for studying the co-evolutionary dynamics between mating behavior and genetic diversity in colonies of eusocial insects. We used microsatellite markers to infer the socio-reproductive behavior in five South American leaf-cutter ant species. We found that variation in genetic diversity in colonies was directly associated with the mating frequencies of queens, but not with the number of queens in a colony. We suggest that multi-queen nesting and mating frequency evolve independently of one another, indicating that behavioral and ecological factors other than genetic diversity contribute to the evolution of complex mating behaviors in leaf-cutting ants. 
    more » « less
  2. Abstract Inquiline ants are highly specialized and obligate social parasites that infiltrate and exploit colonies of closely related species. They have evolved many times convergently, are often evolutionarily young lineages, and are almost invariably rare. Focusing on the leaf-cutting ant genus Acromyrmex , we compared genomes of three inquiline social parasites with their free-living, closely-related hosts. The social parasite genomes show distinct signatures of erosion compared to the host lineages, as a consequence of relaxed selective constraints on traits associated with cooperative ant colony life and of inquilines having very small effective population sizes. We find parallel gene losses, particularly in olfactory receptors, consistent with inquiline species having highly reduced social behavioral repertoires. Many of the genomic changes that we uncover resemble those observed in the genomes of obligate non-social parasites and intracellular endosymbionts that branched off into highly specialized, host-dependent niches. 
    more » « less